
International Journal of Theoretical Physics, Vol. 18, No. 11, 1979 

Quantum Electrodynamics of One Scalar 
Particle 

Egon Marx 

Electromagnetic Effects Laboratory, Harry Diamond Laboratories, Adelphi, Maryland 
20783 

Received September 17, 1979 

The theory of the interaction between a complex scalar field and the electro- 
magnetic field is presented with initial and final conditions that allow an 
interpretation in the context of the relativistic quantum mechanics of a single 
charged scalar particle. Included are particle scattering, antiparticle scattering, 
pair creation, and pair annihilation due to a classical dynamical electromag- 
netic field. The equations of motion are solved by a perturbation expansion, 
which does not lead to the troublesome divergent terms of quantum field 
theory. 

1. INTRODUCTION 

It is a well-known result in nonrelativistic quantum mechanics that the 
theory of a (second) quantized Schr6dinger field is equivalent to the 
quantum mechanics of many particles. A similar claim is made by Bjorken 
and Drell (1964, 1965) for the relativistic theory, but since there are many 
versions of each type of formulation which are often not mathematically 
rigorous, the question of equivalence is not even well defined. 

We have emphasized (Marx, 1969, 1970a, 1970b) the probabilistic 
interpretation of wave functions in relativistic quantum mechanics and 
causal boundary conditions at finite initial and final times, t i and (r. 
Equations are relativistically covariant, but the separation of a wave 
function into positive- and negative-frequency parts and the specification 
of boundary conditions introduces an observer (Marx, 1970c), usually but 
not necessarily tied to his rest frame. A relativistic wave function for one 
"particle ''1 thus has a part that propagates forward in time and is specified 

lWe use "particle" to refer collectively to a particle and its antiparticle, which in our 
formulation are a single entity in different propagation states. 
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at t i, the probability amplitude for the particle, and a part that propagates 
backward in time and is specified at tf, the probability amplitude for the 
antiparticle. An electromagnetic interaction changes these amplitudes, 
giving rise to pair creation and annihilation in addition to particle and 
antiparticle scattering, Thus, a wave function of a single 4-vector variable 
represents all four of these processes, and it is not  necessary to go to 
quantum field theory when the number of particles and the number of 
antiparticles are not independently conserved. As long as the charge is 
conserved, all such processes can be represented by amplitudes with a 
fixed number of "particles" in the form of Dirac's many-times formalism. 

A second quantization of this theory is possible, as shown for the 
spinor field in Marx (1972b), but it also requires one time variable per 
"particle." Also, the quantum field theory and the relativistic quantum 
mechanics versions of our formulation are very close, as is the case in the 
nonrelativistic theory. We can define a time displacement matrix and a 
scattering matrix (Marx, 1972b), but in this paper we deal with the 
probability amplitudes that provide a complete description of the system. 

The relativistic quantum mechanics of scalar particles in an external 
electromagnetic field is obtained in a straightforward way from the 
Klein-Gordon equation. For a bispinor field, the Dirac equation leads to a 
positive or negative definite conserved density that cannot be interpreted 
as a charge density, and the equation has to be modified along the lines 
suggested by quantum field theory. 

Not only are charged particles affected by given electromagnetic 
fields, but they interact among themselves and also radiate. The nonrelativ- 
istic Coulomb interaction is difficult to generalize to a relativistic theory, 
especially considering that the classical theory of the electromagnetic 
interactions of charged particles is still an open subject lacking a Hamilto- 
nian approach. We introduce a dynamical electromagnetic field by using 
the Klein-Gordon equation for the scalar field and adding Maxwell's 
equations with the appropriate sources. The simplest case involves a single 
"particle," and this is the problem that we address here. We thus describe 
Compton scattering by a particle and by an antiparticle, pair creation and 
pair annihilation. 

In Section 2, we find the equations of motion and discuss gauge 
conditions and boundary conditions. We choose to work in the Coulomb 
gauge, and we develop a perturbation expansion of the solution in the case 
that includes particle scattering and pair annihilation in Section 3. Then, in 
Section 4, we discuss time reflection, which includes charge conjugation, 
and we conclude with some remarks in Section 5. 

We use the time-favoring metric in space-time and the modified 
summation convention for repeated Greek subindices that range from 0 to 



Quantum Electrodynamlcs 821 

3. We use natural units such that h, c, %, and Po are all equal to 1, and the 
notation is further explained in the references. 

2. INTERACTING SCALAR AND ELECTROMAGNETIC 
FIELDS 

The wave function for a charged spinless particle is a complex scalar 
field, q~. The electromagnetic field, F~,), can be expressed in terms of the 
potentials, A r, by 

Fr,=A~,,,,-A,,,~ , (2.1) 

The equations of motion can be derived from the Lagrangian density 

where 

~ =(  D~O*)Dr@+ m2~b*eP- �88 Fr,,Fw, 

D r = O r + ieA r 

We obtain the Kle in-Gordon equation 

(D 2 + m2)d?---- 0 

and the inhomogeneous Maxwell equations 

where 

(2.2) 

(2.3) 

(2.4) 

The homogeneous Maxwell equations are satisfied as a consequence of 
equations (2.1). 

The specification of boundary conditions for the scalar field is closely 
related to its physical interpretation and the choice of a Green's function 
to solve the in_homogeneous Kle in-Gordon equation 

(0 2 + m2)~(x) = to(x) (2.7) 

We choose the causal Green's function or Feynman propagator and use 

(2.6) 

=Jr (2.5) 
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Green's theorem to write the solution in the form 

~oA(+)(x) -- -T- i/~A(-+)(x) 

2s -+)(x, 0) = u is(x) 

where E is the integral operator 

= ( -- t72 + m2) 1/2 (2.15) 

We use equation (2.13) and integration by parts to rewrite equation (2.8) as 

, ( x ) - - -  f d~x' f*d t%(x ' -x )~(x  ') 
tl 

+ i  f e'x'[ ~'~,+,(x- x,,,- ,,)][ ~(x',,,)+ i(/~,)-I~(X', 1i) ] 

- - i f  d3x '[  E'A(-)(x  - x ' , t - t f ) ] [  q~(x', t f ) -  i ( /~ ')- l~(x ' ,  ty)] 

(2.16) 

,(x) = - f a'x' f ,sd,,~( x ' -  x)~(x') 
ti 

- f a,x,~,+,(x- , ' ,  , x )~0,(x )1,,-,, 

- f d3x,A,-,(x- x')O2,(x')l,,.,, (2.s) 

where t is an intermediate time, 

A F( x ) = O( t)A ( + )( x ) -- 0(- -  t)A(-)(x) (2.9) 

A(-*)(x) = ;i(2,0-3fd~(2ko)-lexp[ -;ik.x] (2.10) 

k0 -- + (k 2 + m2) l/2 (2.11) 

and O(t) is the unit step function. The Green's function, AF, satisfies 

(a 2+ m2)AF(x)= _ 8(x) (2.12) 

while A (• are solutions of the homogeneous Kle in -Gordon  equation 
which also satisfy 

(2.13) 

(2.14) 
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The last two terms show what combinations of the function and its time 
derivative have to be specified at the initial and final times. If we assume 
that the sources vanish at these times, the function q~ can be decomposed 
into its positive- and negative-frequency parts, 

,(~-)(x) = �89 [ ~(x) + iE - ',~(x) ] (2.17) 

which are related to the probability amplitudes g(+-)(x) by 

g( • ~( x)  = (2g)'/=~,(~-~( x)  (2.18) 

When the electromagnetic field does not vanish, the probability amplitudes 
are generalized to 

g(+-)(x) = (E/2) ' /2(1 +- iE -'Do)CP(x ) (2.19) 

so that the conserved charge is always 

Q = e fd3x[ Ig (+) (x ) l  2 -  I g(-)(x)l 2] (2.20) 

Although we can specify two arbitrary functions g(+)(x, ti) and g(-)(x, tj), 
considerations of the physical interpretation limit us to two cases. Either 
we specify the particle amplitude at the initial time normalized so that 

f d3xl s,+,(x,,,)12= 1 (2.21) 

and assume that the antiparticle amplitude vanishes at the final time, or we 
give the latter so that 

fa'xlg(-'(x,q):= 1 (2.22) 

and assume that there is no particle at the initial time. The purpose of the 
dynamical calculations is to find both g(+)(x, ty) and g(-)(x,t).  More 
generally, we define ep(+-)(x) in the case of the inhomogeneous Klein-  
Gordon equation to be 

, , + , ( x )  = - f d3x" f 'dt'a (+)(x- x')o~(x') 
ti 

+i f d3x'[2E'A(+)(x-x',t-t,)]ep(+)(x',ti) (2.23) 

, ,- ,(x)= f :x' ft':a,'a(-,(x- 

- i  f a3x'[2P~'a(-,(x-x',t-t:) ]e~(-,(x',t:) (2.24) 
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t i to) (b) 

Fig. 1. Representation of the interaction between a charged spinless particle and electromag- 
netic radiation when (a) a particle is specified at the initial time or (b) an antiparticle is 
specified at the final time. 

The normalization of the given probability amplitude and charge conserva- 
tion imply that 

fd3xl g<+~(x, t~)12 + fd3xl g<-)(x, t,)l 2--- 1 (2.25) 

In our physical interpretation, measurements are carried out on particles at 
the final time and on antiparticles at the initial time. If a particle is 
specified at the initial time, the first term is the probability that this 
particle would be scattered and the second term is the probability that the 
particle would be annihilated. If an antiparticle is specified at the final 
time, these terms correspond to pair creation and antiparticle scattering, 
respectively. These processes are shown in Figure 1. 

Equations (2.5) for the electromagnetic potentials comprise three 
equations of motion and one constraint. The fields are invariant under 
gauge transformations of the second kind, 

.4.(x) A.(x) = A.(x) + A ~(x) (2.26) 

where A is an essentially arbitrary real function. We also have to change 
the phase of the scalar field by 

qJ(x)---~q~'(x) = Ca(x) exp [ - ieA(x) ] (2.27) 

to preserve the form of the Kle in -Gordon  equation. We have shown 
(Marx, 1970c) that there is a gauge-dependent part of the potential which 
vanishes in the Coulomb or radiation gauge and a physically meaningful 
part that is invafiant. 
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We first consider a Lorentz gauge, which preserves manifest relativis- 
tic covariance, and restrict the potentials by 

a~A~ =0 (2.28) 

Equations (2.2) and (2.5) reduce to 

(02 + m2)q~_ _ 2ieA~,eO,~ ' _ e2AZdp (2.29) 

02A, =j~ (2.30) 

In the case of retarded boundary conditions, we have to specify A~, and .4~, 
at the initial time. These eight functions are constrained by the Lorentz 
condition (2.28) and Maxwell's equation 

V .E=  - A..~-- V2Ao=Jo (2.31) 

The charge density j0 depends not only on A 0 and g(+), which are known, 
but also on g(-), which has to be determined by solving the equations of 
motion. We thus choose to work in the Coulomb gauge and have the 
vector potential satisfy 

V-A--0 (2.32) 

equations (2.2) and (2.5) reduce to 

(0 2+ m2)~ = _ 2ieA~q~,~, + i~lod?- e2A 2q~ (2.33) 

V2A0 -- --J0 (2.34) 

02A=jt (2.35) 

where Jt is the transverse part of the current density j, given by 

1 [ A(J(x ' , t )d3x'  ] 
J t - - ~ V / ~  V j ~ (2.36) 

an unfortunate consequence of (2.32). 
The causal Green's function for the electromagnetic potentials ap- 

pears naturally in quantum field theory, and it is sometimes taken over 
into relativistic quantum mechanics (Bjorken and Drell, 1964). We do not 
use it here because the Feynman propagator, De(x), is complex and thus 
not appropriate for the real fields A~. Furthermore, the positive- or the 
negative-frequency part of a real field requires the specification of both the 
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field and its time derivative, which cannot  be given at two different times. 
Consequently, we select the retarded Green's  function, which requires the 
values of the function and its time derivative at the initial time, in the case 
of a particle given at this time. Invariance under t ime reflection then would 
lead to the field specification at the final time when an antiparticle is given 
and the use of the advanced Green's  function. The retarded Green's  
function, 

OR(x ) = - (4~rlx[)-18(t - [x l )0 ( t )  (2.37) 

is real, and it satisfies 

0 2OR(x)  = - 8 ( x )  

Green's  theorem then gives the field at later times, 

(2.38) 

A(x)= - f d3x' f td t 'OR(x  - x')j,(x') 
ti 

3 f l ~ t  t - f d x oR ( x -  x , ,  - ,;)0o A(x, ,,) (2.39) 

If we substitute the expression (2.36) for Jt in the first term and integrate by 
parts, 2 we see that we do not have to compute the transverse part  of j if we 
perform a similar operation with the Green 's  function. We write 

A(x)=- f d3x' ftdt'DR(x-x').j(x ') 
ti 

�9 t p _ f a3x,[ o R ( x -  x', t -  tl)A(x , t i ) + / ) R ( x -  x', t -  ti)A(x ,ti) ] 

(2.40/ 

where the components  of the tensor Green 's  function, DR, are 

, -  (~,~ % ) f  Ix'--x"-lOR Dmj (x  - x ) - ( 4 ~ ) - t  -- V d3x " I (x - x", t - t ') 

(2.41) 

The scalar potential, A 0, obeys the Laplace equation, and we can write the 

ewe are really dealing with distributions, and we are assuming that continuity and differentia- 
bility conditions on j(x) are satisfied. 
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solution 

=(4~r)- ' fd3x ' l  x - x '  I-~jo(x',t) (2.42) Ao(x) 

Thus, to study the interaction between an incoming particle and a 
radiation field, we specify 

dp ( + )(X, ti) - - f ( x ) ,  dp (-)(x, tf) = 0 (2.43) 

A(x, ti) = a(x), 2i,(x, ti) = b(x) (2.44) 

and the complex function f and real vector functions a and b have to 
satisfy 

f d3xl(2P.)-~/2f(x)12= 1 (2.45) 

v-a(x) =0, v-b(x) = 0 (2.46) 

We then solve the Klein-Gordon and Maxwell equations to find r ~), 
q~(-)(x, ti), A(x, tr ), and ,A(x, tr ), although we can obtain r and A t at all 
intermediate times as well. 

3. PERTURBATION EXPANSION 

The problem stated at the end of Section 2 can be solved approxi- 
mately if we expand the fields in powers of the electric charge, that is, 

OQ 

r E eiq~(O(x) (3.1) 
i=O 

A,(x)=  ~ eiA~i)(x) (3.2) 
i=O 

We are assuming that these expansions are possible, although we know 
that there could be branch points that would lead to divergences in some 
order. 

We solve the equations of motion (2.33)-(2.35) in each order of e. 
They have the form 

(0 z + m2)q~(i)(x) = to(i)(x) 

V~A~O(x) = - A O ( x )  

o ~A(O(x) =j~O(x) 

(3.3) 

(3.4) 

(3.5) 
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We also have to make sure that  the constraint is satisfied by the initial 
conditions in each order to remain in the Coulomb gauge. 

The sources all vanish in zeroth order, so the fields obey homogeneous 
equations and they have to satisfy the given boundary  conditions. Equa- 
tions (2.46) ensure that the gauge condit ion is satisfied. The zeroth-order 
fields are 

~,(~ = if d3x'[ 2/~'A ( + ) ( x -  x ' , t -  li) ] f (x ' )  (3.6) 

A~~ =0 (3.7) 

A,O)(x)_- - f a3x,[ oR(x- x', ,-  Ob(x') +  R(x- x', ,-  t;)a(x') ] (3.8) 

The higher-order contributions to the fields satisfy homogeneous 
boundary  conditions, and the sources are functions of the lower-order 
fields. Up to the fourth order, the sources are 

~ ( 1 )  = __ 2iA(0). Vo(O) (3.9) 

j(1) = i(q,(o),+!o) _ 0!o),+(o) ) (3.10) 

w (2) = -- 2i(A (~)~(o) + A (o),~(1)~ + i~1)0(o) + A(O)2~b(o) (3.11) # r , #  p, -r ,# / 

j(2) __ i(0(1),,0!o) + o(o),o(1) _ c.c.) - 20(~176 (~ ~ (3.12) 

o~ (3) = - 2i(A (2)r -4- A (l)d~(1) + A (~ \ p -r ,p - -  p - r ,p  p "r,# 1 

+ i(.,~2)~(o) + ~/o0)~(1)) + A(O)24)O) + 2A(O). A(l)q~(o) (3.13) 

j(3)____ i ( cb (2 )*~byO)+  d ? ( 1 ) * o ! l ) +  ~b(0)*cby2) __ C.C, ) 

- 2(~O)*q)(~ + q~(~ (~~ - 2q~(~176 (~ 1) (3.14) 

0)(4) ~ 9.i(.4(3)d~(O)4-,4(2)~(1)-1-,4(l)d~(2)-l-.,~(O)cb(3)~ 
- - - - - \ - ~  -r,~ - - - * #  -r ,# - - - * #  "t-,# - - - ~ #  -t-,p 1 

+ i(A~3)#) (~ + A ~2)4,(1) + A~1)#,(2) ) + A(~ 

+ 2A (~ A(I)~ o) -- (A (1)2 _ 2A(O). A(2))~(o) (3.15) 

j(4) = i(0(3).#,,(0) + r + 1-'r _4 ~e'(~ 3)~,~, -- C.C.) 

_ 2(~(2),,/,(0) + ,/,(" *~,(~) +,#(~ ~~ 

- 2 ( ~ ~  (~ +O(~ ~_~ -_y~,~(~176 _~, (3.16) 
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These source terms are then substituted in equations (2.16), (2.40), and 
(2.42) to obtain the fields to the desired order in perturbation theory. Since 
the boundary conditions are already satisfied by the terms of order zero, 
only the integral over the sources is present in higher orders. These 
integrals can be represented by Feynman diagrams, and they differ from 
those obtained in quantum field theory. Here they represent dynamical 
processes in space-time, and the finite elapsed time precludes four-dimen- 
sional Fourier transforms. In Figures 2-4, we show some of the diagrams 
that contribute to the scattered particle field, the scattered electromagnetic 
field, and the antiparticle field at the initial time that represents pair 
annihilation. The terms pictured in Figure 2 come from the sources given 
in equations (3.9) and (3.10), those in Figure 3 come from equations (3.11) 
and (3.12), and the other expressions give similar diagrams for higher-order 
contributions. The electromagnetic interaction represents both the con- 
stant-time scalar potential and the vector potential that propagates with 
the speed of light. The intermediate scalar field corresponds to both 
particle and antiparticle propagation, that is, the end points can have any 
time ordering. There are a number of differences between these diagrams 
and the ones that come from the usual theory of quantized fields. Although 
we are dealing with a single scalar field of one four-vector variable, the 
particle lines can appear repeatedly in the diagrams, as shown in Figure 4e. 
Similarly, the incoming and intermediate electromagnetic fields can appear 
several times, as in Figures 4a and 4e. All "particle" lines originate at the 
initial time and terminate at either the initial or the final time. The 
electromagnetic field emitted by the transverse part of the current propa- 
gates only forward in time, and the source is always the product of a field 
and the complex conjugate of a field. On the other hand, the absorption of 
the electromagnetic field appears only in terms where the field, and not its 
complex conjugate, is a source for a higher-order field. These observations 

tf 

(o} (b) Ce) 

Fig. 2. Feynman diagrams for the first-order contributions to (a) particle scattering, (b) pair 
annihilation, and (c) emission of radiation. 
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C ' / (  e' 

(o )  (b)  (c )  

Marx 

�9 AC*) i, ,,,( u I ~(a)(-) ~ltt 
,2~-d"e..e l / L \  

(d)  (e )  ( f )  

W 

(o) (h) ( i )  

Fig. 3. Second-order contributions to (a)-(c) particle scattering, (d)-(f) pair annihilation, and 
(g)-(i) emission of radiation. 

show why troublesome diagrams such a those in Figure 5 do not appear in 
this theory, which thus is free from these basic divergent terms. 

4. TIME REFLECTION 

The theory of the complex scalar field interacting with the electromag- 
netic field is invariant under time reflection, which is the improper anti- 
chronous Lorentz transformation given by 

(a~')-- 
oo!] 

0 1 0 
0 0 1 
0 0 0 

(4.1) 

As a consequence, t is replaced by - t ,  the scalar potential also changes 
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t i 

tf 

t i 

• (4) (-t-i ~l,l~ (4) (,-I-) 
" ~  ~ (2) te  

,l(lie~)~(3)~e e~ i l )~ / /OA  (I) 
e ~ ~  ~ (_o~/~i / ~'l o<~<o,\~<o>7o ~ 0/7o~o~ o<oTto<o,. 

(a) (b) 

)(,/ ~ ~(4) (4-) 
~>7". ~, <,>.. .,.T, iC~,,> 

(c) (d) 

\~0( 4'(+' \r (4'(§ 

(e) (f) 

Fig. 4. Some of the fourth-order contributions to particle scattering. 

~ t~ l~  ) (+) 

/ ?<o, 
(o) 

~ (3) (+) / 

~ ( ~ e  e / (3(~) ('t'1 

I~tl 7.', ) A<~ S I ~  e 

(b) (c) 

Fig. 5. Third-order diagrams that do not appear in this theory and that correspond to (a) 
vacuum polarization, (b) mass renormalization, and (c) charge renormalization or vertex 
correction. 
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sign, and the scalar field is not affected but for the change in the argument. 
As a consequence, particle and antiparticle amplitudes are interchanged, as 
well as the initial and final times. This transformation is also called 
Schwinger time reversal as opposed to Wigner time reversal or reversal of 
the direction of motion, in which the field is replaced by its complex 
conjugate to change back the roles of particles and antiparticles. We note 
that the Lagrangian density (2.2) is invariant under time reflection without 
a change in the sign of e. 

The specification of boundary conditions is affected by time reflec- 
tion, We have 

A(+-)(x, - t ) =  - A ( ~ ) ( x , t )  

AF(X , -- I) ~---AF(X, l) 

DR(x, -- t) = DA (x, t) 

(4.2) 

(4.3) 

(4.4) 

which show that the scalar field behaves in the same manner as before, 
with the positive- and negative-frequency parts interchanged, while the 
retarded electromagnetic field becomes an advanced field and its 
boundary values are given at the final time. The problem solved in Section 
3 is changed as follows. An antiparticle amplitude is given at the final time, 
together with the electromagnetic vector potential and its time derivative, 
and the particle amplitude at the initial time is set equal to zero. The causal 
Green's function can then be used to find a perturbation expansion of the 
antiparticle amplitude at the initial time, which represents the antiparticle 
scattering, and the particle amplitude at the final time, which corresponds 
to pair creation. Concurrently, the vector potential is determined at the 
initial time by means of the advanced Green's function, while the scalar 
potential can be found as a solution of Laplace's equation.. These processes 
are represented in Figure lb, and the diagrams in Figures 2 - 4  have to be 
turned upside down. We have found a similar association of retarded and 
advanced fields with particles and antiparticles, respectively, in a classical 
theory of electromagnetism (Marx, 1976a). 

5. CONCLUDING REMARKS 

We have presented the equations of motion and discussed the 
boundary conditions for interacting complex scalar and electromagnetic 
fields. We have also shown how to find a solution using perturbation 
expansions. The physical interpretation of this problem in terms of proba- 
bility amplitudes for charged spinless particles and antiparticles and in 
terms of electromagnetic radiation forms the basic framework of relativis- 
tic quantum mechanics. 
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The given "particle" and the given radiation can be directed at each 
other either from the past or from the future. This point of view (Walter 
and Marx, 1971) is analogous to the one-dimensional potential barrier in 
nonrelativistic quantum mechanics, where particles come either from the 
right or from the left. When the particle and the radiation come from the 
past, the former can be "transmitted" or scattered, or it can be "reflected" 
or turned around in time, a process that an observer would interpret as 
pair annihilation; in either case, radiation is present at the final time. In 
the time-reflected process, an antiparticle and radiation come in from the 
future, and the antiparticle can be scattered or turned around in time, that 
is, pair creation can occur; radiation then is found at the initial time. There 
is no intrinsic difference between electromagnetic fields obtained by means 
of retarded or advanced Green's functions, but the form of the solutions of 
Maxwell's equations depends on the specification of boundary conditions. 

There are several obvious generalizations of this problem, but they are 
beset with serious difficulties. Of more interest than spinless particles are 
electrons, that is, spin-�89 particles that are usually represented by a bispinor 
field that obeys the Dirac equation. We cannot interpret this field in terms 
of probability amplitudes for electrons and positrons because the con- 
served current density has a charge-density component that does not 
change sign. We have tried to overcome this problem in a number of ways 
(Marx, 1970b, d, 1972b, 1974a, c, 1976b), with only limited success. The 
relativistic quantum mechanics of several particles involves one time 
variable for each particle (Marx, 1970a, 1972b), which does not lend itself 
to a Hamiltonian formalism. The classical theory of the electromagnetic 
interaction of charged point particles is still evolving , is not free of 
divergent terms, and does not have a canonical formulation; it is hard to 
see how we can use this theory as a starting point for the interaction 
between two or more particles in relativistic quantum mechanics. To 
generate an electromagnetic interaction, not between the particles, but 
between charge densities formed from the probability amplitudes (Marx, 
1972a), we find problems with many-particle amplitudes. Alternatively, the 
electromagnetic field would have to be generalized to accept sources of the 
form (Marx, 1970a) 

�9 , * __ * j,,x(xl,xz, x3) = t(d#.mx~b--dp.m.dp.x ~b.,.xr 

r162162162162 +r162 r (5.1) 

in the case of a three-particle wave function q~(xl,x2,x3). Even a many- 
times formalism for the Coulomb interaction in the nonrelativistic ap- 
proximation (Marx, 1974b) is not free of problems. The quantization of the 
electromagnetic field is made difficult by the questions of gauge invariance 
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and  constraints.  If  only  the radia t ion field is quant ized in a gauge-indepen-  
dent  manner  (Goldberg  and  Marx,  1968), the procedure  is observer depen- 
dent, and we still have to deal with the Cou lomb  interaction. A more  
covariant  formulat ion has to rely on  special procedures  such as those 
suggested by G u p t a  and  Bleuler, 3 which single out  the componen t  A 0 of 
the electromagnetic  potential  and  involve reference to unphysical  states. 

It  is also not  s t ra ightforward to compare  our  results to those obta ined  
in terms of scattering amplitudes.  We  have a dynamical  formalism where 
the time variable has a special role a nd  is limited to a finite interval. We do 
not  see any  advantages  in in t roducing divergences and  ill-defined quanti-  
fies by going to infinite times and  plane-wave states in m o m e n t u m  space, 
a l though wave packets  given b y  a ( -+)(k, t) have been  used in several of  our  
papers. 

W h a t  we have here is a per turbat ion  expansion that  is free of  the 
usual divergent terms of  q u a n t u m  field theory. The mass and  the charge 
are the physical  parameters ,  and  no renormalizat ion procedure  is required. 
This is one more  step in our  p rogram to reformulate quan tum elec- 
t rodynamics  without  divergent  quantities. 
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